
 
 
OVERVIEW: 
 
SpeakEasy by ShroomDoom Studios is a GameMaker runtime designed to play back 
keyframe data exported from the lipsynching program Papagayo. 
 

Import .dat files from Papagayo as included files into your GameMaker project. Parse 

them and then play back their keyframe data in-game using the runtime. 
 
SpeakEasy is ideal for animating character mouth shapes during in-game dialogue.  
 
Papagayo is a GPL-licensed open source lipsynching program originally designed to 
work with the animation package Anime Studio. 
It can be used to more quickly and easily keyframe out cartoon character mouth 
animation. 
 
Download Papagayo for free from Lost Marble: http://www.lostmarble.com/papagayo/   
 
 
CREDITS: 
 
Photorealistic mouth shapes are from the Preston Blair phoneme series by Gary C. 
Martin, available for free use at http://www.garycmartin.com/mouth_shapes.html. 
 
RESOURCES: 
 
 GMC bugs & support thread: http://bit.ly/1sLmP6I  
 GM Marketplace asset page: http://speakeasy.shroomdoom.com/  
 ShroomDoom Studios website: http://blog.shroomdoom.com/  
 
TIPS: 
 
Papagayo sometimes exports timelines in which keyframes are out of order; this may or 
may not be a bug. At runtime, the timeline handler just skips over out-of-order frames.  
This means that playback won't break altogether, but it won't follow the timeline exactly. 
You may want to go into your .dat files with a text editor and make sure there are no 
jarring out-of-order frames. (There may be an implementation to remove out-of-order 
frames from timeline data automatically in the future.) 
 
Papagayo by default exports keyframe data at a 24 FPS framerate. GameMaker by 
default runs at 30 FPS, and your game is likely running at 60 FPS.  

http://www.lostmarble.com/papagayo/
http://bit.ly/1sLmP6I
http://speakeasy.shroomdoom.com/
http://blog.shroomdoom.com/


The runtime converts between framerates to sync up keyframe playback with audio.  
If your Papagayo data is exported at a framerate other than 24 FPS, you'll need to 

specify that framerate in your timeline by modifying obj_timelineHandler's 

timelineFPS variable. 

 
Sometimes the location of included files inside the GameMaker project gets messed up, 
especially if you start using group folders. Clean your project asset compiler cache. 
Make sure files in your .gmx file are in a location that matches where they are in the 
actual project folder. 
 

Reserved names: phoneme, tmln 

 These are enum names, so don't use them as variables. 

 
 
DOCUMENTATION: 
 

scr_timeline_create(String file) 

 Parses input file and returns timeline as a 2d-array.  
 Returns: 2d-array 
 

scr_timeline_initEnums() 

 Initializes the global variables and enums used by the runtime. Should be called 
at the beginning of room or creation of control object.  
 Returns: void 

 

scr_timeline_init(instance timeline, audio audioFile, 

String datFile) 

 Initializes a specific timeline. MUST be called to enable timeline playback. Should 
call immediately after creation of timeline instance. 
 If you know Java, think of this as the timeline's constructor.   
 Returns: void 

 

scr_timeline_execute(instance timeline, enum 

tmln.ACTION)  

 Adds a command to be performed to a timeline's command stack. See 'timeline 
commands' for a list of possible commands to execute.  
  

 Example: 
 
  scr_timeline_execute(tl,tmln.STOP); // reset 

animation, stop it  

  

 Returns: void 

 

scr_timeline_changeSource(instance timeline, audio 



newaudio, String newdata) 

Reassign the audio and data for a timeline; will stop and reset playback to frame 
0 of timeline. If you want to automatically restart the animation,you'll have to 
explicitly  call scr_timeline_execute(timeline,tmln.RESTART) after changing 
the source. 

 Returns: void 

 

scr_timeline_getDatForSound(audio snd, String 

sndprefix, String datprefix) 
 Makes keeping track of corresponding sound files and .dat files easier. Ideal for 
projects with large numbers of sound files.  
 Returns .dat file that corresponds to a sound file. 
  
 Example:  
 

  Execute: scr_getDatForSound(snd_lipsync_Woody2, 
snd_lipsync_, dat_lipsync_);  

  Return: "dat_lipsync_Woody2.dat", string name of .dat included 

file 
 
 Returns: String, .dat file name 
   

scr_timeline_execute()commands list 
 

 All commands should be used with the prefix tmln.  

 

 TOGGLE,    if playing, pause; if paused, play

     TOGGLELOOP,  shouldLoop = !shouldLoop 

     PAUSE,     pauses timeline, saves position 

     STOP,      pauses timeline, resets position to 0 

     RESTART,   resumes timeline from 0 

    RESUME,    resumes timeline from current position 

     LOOP,      sets shouldLoop to true 

    ENDLOOP,   sets shouldLoop to false 

     NULL       null placeholder command - don't do anything 

 
 Not yet implemented: 

 REVERSE,   sets timeline direction to -1 

     FORWARD,   sets timeline direction to 1   

 
 
TODO:  
 
Pair sounds/data together in a data structure. (Sort of accomplished with 

scr_timeline_getDatForSound.) 



Remove out-of-order frames from parsed timeline? 
Fix HTML5 support. (File reading in-browser is currently broken in GM.)  
Implement reverse-scrubbing of timelines. 
 
 


